
Microsoft Access 2016 - Level 3

© Watsonia Publishing Page 1 Chapter 1 - Relational Database Design

CHAPTER 1 RELATIONAL DATABASE DESIGN

In this session you will:

 gain an understanding of how to design a relational
database

 gain an understanding of how to scope the database
system

 gain an understanding of how to determine inputs for a
database

 gain an understanding of database normalisation

 gain an understanding of how to test for First Normal
Form

 gain an understanding of Second Normal Form (2NF)

 gain an understanding of how our case study looks after
Second Normal Form

 gain an understanding of how Third Normal Form can
be applied to a database

 gain an understanding of indexing in databases.

The key to a good database lies in effective and efficient design.

But just how do you go about converting your task or job into a
database application? How do you know if it is created efficiently
and that the application has been designed to be able to grow with
your needs in the future?

The answer to these questions lies in database design. In this
chapter we will explore some of the aspects and techniques
associated with the design of good databases.

INFOCUS

Sam
ple

Microsoft Access 2016 - Level 3

© Watsonia Publishing Page 2 Chapter 1 - Relational Database Design

DESIGNING A RELATIONAL DATABASE

Planning

Experienced database developers know that the more time and effort that they put into the overall
planning of the database, the easier it will be to use and operate.

There are many ways of approaching the development of a database system and these ways vary
depending upon the complexity of the system. Most developers use a top down approach –
starting with the overall concepts, and then identifying the components required.

The Three Steps of Database Design

There are three main steps to designing an effective relational database:

 Scope the System

Scoping is all about determining what the system should be able to do. You begin by
establishing the overall aim of the system. Ask yourself one fundamental question:
“What is the database that I will construct supposed to do?”

 Determine the Inputs and Build A Prototype Table Structure

Once you have an idea of what information is required from the system you can determine
what data needs to be entered into it. Here you determine the data that will be required to
be entered into the system to achieve what the system is supposed to do. Once the inputs
have been determined you can construct a test table or tables that will be used to store the
data. This prototype table is often drawn on paper.

 Normalise the Data

Arguably the most academic of the steps, normalising involves applying a set of database
design rules to the prototype table. As you apply the rules, you adjust the table or tables
until you have arrived at a network of tables that ensure efficient data storage and
eliminate all possible examples of redundancy (repetition).

As you will soon see, creating a database file
with table structures in Microsoft Access is
relatively easy to do. As a consequence there is
an inclination amongst less experienced users to

create a database file without giving much thought
to the overall objective and design of the
application. This is not the right way to approach
database development.

1

2

3

Sam
ple

Microsoft Access 2016 - Level 3

© Watsonia Publishing Page 3 Chapter 1 - Relational Database Design

SCOPING THE SYSTEM

Scoping a database system requires you to
determine what the system should ultimately be
able to do. Scoping statements for systems are
often written as a general aim. The aim is then

expanded with a series of objectives which outline
how the aim will be achieved through the system. It
is important to think through as many scenarios
and possible uses as possible.

How to Scope a System

To scope a new database system you begin by establishing the overall aim of the system. A useful
approach is to ask the question: “What is the database that I will construct supposed to do?” Some
sample aims might be:

My system is supposed to track employee expenses.

My system is supposed to track my fleet of hire cars.

My system is supposed to track customer purchases.

Once you have done this you can create the specific objectives of the system that will help it achieve
its aim. For example, using the first aim above, you might have the following objectives:

To track employee expenses my system should:

 show me the daily expense details for each employee

 produce expense reports

 produce a list of current employees.

There would most likely be many more objectives – the objectives above are designed to give you
an idea of what is required.

Scoping – A Case Study

In this courseware we will construct a relational database for the fictional company Alpheius Global
Enterprises (AGE) that helps track expense claim forms.

At AGE, goods, services and products can only be purchased through a rigorous purchase orders
system. However, sometimes employees need to make quick purchases. At other times employees
may be interstate or overseas, or entertaining guests and visitors, where it is not feasible or practical
to raise an official purchase order. In these circumstances the employees can make purchases using
their own money or credit cards and then claim the expense back on AGE. When this occurs
employees are required to complete an Expense Form with the Admin & Accounts department. The
money can be paid either by cheque or paid into the employee's salary.

Up until now the Admin & Accounts department have been recording these expense claim details in
a spreadsheet. After only three months they already have over 700 forms entered into the
spreadsheet. The big problem is that the spreadsheet is becoming unwieldy and doesn't allow them
to produce worthwhile information without a lot of rearranging of the layout and the data.

So it has been decided to build an Expense Claim system in Microsoft Access. The scope of our
project is to build an efficient Expense Claim system that allows AGE to track expense claims from
employees.

The objectives of the system are to:

 produce reports showing all of the claims by type (e.g. meals, accommodation, etc), and by
person

 produce a monthly expenditure report for each department

 analyse expenses

 enable easy entry of data by people not overly-familiar with computers or Access.

Sam
ple

Microsoft Access 2016 - Level 3

© Watsonia Publishing Page 4 Chapter 1 - Relational Database Design

DETERMINING THE INPUTS

Once you have an idea of what information is
required from the system, you can determine
what data needs to be entered into it. This is
really a brainstorming session where you try and

anticipate all of the fields (columns) that you will
need to meet the overall system objectives. When
you have determined these inputs you can use
them to create a prototype table.

How to Determine the Inputs

Start by having a look at the system aim and objectives. Imagine that the data to meet these
objectives will be placed in one large table. Then make a list of all of the data columns that you
would require in that table.

Inputs - The Alpheius Global Enterprises Case Study

To meet the objectives of our system we will need to record:

 the claim details (reference number, amount, type of expense)

 who submitted the claim

 the department of the person submitting the claim

 the various types of claims

 and perhaps some personal details about the employees for statistical analysis later

The information above will next need to be placed into a test table – not necessarily in Access, but
maybe in a prototype spreadsheet or even on paper. We have created a mock structure and taken
the first few records from a spreadsheet system to create the table shown below.

Sam
ple

Microsoft Access 2016 - Level 3

© Watsonia Publishing Page 5 Chapter 1 - Relational Database Design

NORMALISING A DATABASE

Just because you have placed your data in a
table structure doesn't necessarily mean that you
have an efficient system. Indeed, the complete
opposite may well be the case. There are actually

five tests that can be applied to the tables of your
system that will ensure that the system is functional
and well designed. The application of these tests is
known as normalising.

What Is Normalising?

Normalising is actually a sequential set of tests, each to be performed only when the former has
been satisfied. While the explanation of these tests may sound complicated, they are quite logical
and based on common sense.

The point of the tests is to eradicate duplication of data and redundancy of data. While the table on
the previous page may seem well-structured and organised, it is extremely inefficient and would be
troublesome to implement in a relational database such as Microsoft Access.

In reality, only the first three forms are sufficient to ensure that you have a sound system (the other
two tests were developed for special circumstances).

The First Three Tests of Normalisation

First Normal Form (1NF)

A table has passed the first test (called first normal form – 1NF) when all of the fields
cannot be divided any further and contain only a single value. In technical terms all fields in
a table or tables should be atomic – which means that data cannot be divided any further.

Second Normal Form (2NF)

All fields in a table need to refer to a key field – this key field is often a primary key field
which identifies each field as unique. To do this, additional tables are often required to be
developed and the duplicates from the main table are extracted and placed into these
secondary, or lookup tables. In second normal form each table in your system must be
given a primary key – a unique entry for each record. Each field in the table must refer to
that, and only that, primary key. The purpose of this is to make it impossible to have
duplicate records in a table.

Third Normal Form (3NF)

In the third normal form, all fields in a table must be mutually independent – in other
words one field cannot rely on another. The best example of this would be in an invoicing
application. It would be tempting to create at least three fields: Quantity, Price, and Total.
The Total field is really the price multiplied by the quantity.

1

2

3 Sam
ple

Microsoft Access 2016 - Level 3

© Watsonia Publishing Page 6 Chapter 1 - Relational Database Design

FIRST NORMAL FORM (1NF)

A table has passed the first normalisation test
(called first normal form – 1NF) when all of the
fields cannot be divided any further and contain
only a single value. This sometimes takes on two

variations. The first is where columns such as
people’s name or address can be further broken
down. The second is where repeating columns for
the same type of data appear.

Alpheius Global Enterprises Case Study

The first reason our table (shown earlier in the chapter) is not in first normal form is because the
Employee field can be further broken down. We need to break our name fields into First Name and
Last Name. This will make it much easier to sort the data by Last Name and to locate records for
specific employees based on their Last Name.

The second reason that our table is not in first normal form, is because there are repeating groups of
fields in the table – this is a bit harder to explain. Currently there are seven types of expenses catered
for in the table: Accommodation A, Accommodation B, Postage, Meals, Tea and Coffee, Gifts, and
Other. What we are doing in each of these fields is storing the appropriate amount of expenditure. This
type of layout is suited to a spreadsheet but is a disaster in a database and causes problems because it
is more difficult in a database to sum across several columns and secondly, you'll have a mountain of
work to do when you want to add an eighth category. All of the fields in the table are really just expense
types. A much better way to represent these fields is in an Expense field and an Amount field.

After first normal form your table will appear as shown below.

Sam
ple

Microsoft Access 2016 - Level 3

© Watsonia Publishing Page 7 Chapter 1 - Relational Database Design

SECOND NORMAL FORM (2NF)

First normal form eliminates duplication
horizontally across the field columns. Second
normal form (2NF) is designed to eliminate
duplication in the records vertically down the

table. This is usually done by identifying common
entities and breaking a large table up into smaller
entity tables which take on the role of lookup
tables.

Alpheius Global Enterprises Case Study

After first normal form, it is clear that there is data duplication in our table. For example, the names
and other details of the employees are repeated each time the same employee incurs an expense
transaction. It is clear from this, that employees form one entity while their expense transactions form
another.

Second normal form requires that separate tables be created for each of these entities, with the two
tables linked using a common field as follows:

We now have a two-table structure
where one records the transactions
(Expenses) and the other is used as
a lookup table with information
relating to employees (Employees).
The two are linked using the primary

key of the lookup table (EmpNo).

A closer study shows that we still have duplication in the Expenses table. Each time we add a new
transaction we have to record the description of that expense: Accommodation A, Accommodation B,
Postage, etc. In reality expenses themselves are a separate entity to expense transactions, so we can
therefore further split our existing Expenses table so that our second revision looks as follows:

The advantage of putting entities into
their own tables is that we can add
more information about the entity
that may be useful for reporting later
– here we’ve added the
MaximumValueAllowed field which
will help us report if employees are
overspending.

Another useful feature of splitting entities into tables is that we can create additional support entities.
For example, in our case study it has been decided that we could add some more personal details
about employees, such as home phone number, next of kin, and the like. Because this information
should really be kept more confidential and discreet we can place it into a separate table linked back

to the Employees table as shown below:

Sam
ple

Microsoft Access 2016 - Level 3

© Watsonia Publishing Page 8 Chapter 1 - Relational Database Design

SECOND NORMAL FORM – CASE STUDY

The tables for our case study, complete with the
sample data, will work as shown below. Arguably,
Second Normal Form takes the greatest amount
of thinking and time to achieve and is often the

result of working through tables and the case study
several times. However, it is well worth the time
and effort and will result in a far more efficient
database.

Lookup Tables

The idea in our case study after Second Normal Form is that data for employees, their personal details,
and expense types should only be entered once – into special tables known as lookup tables. These
lookup tables have at least one field that identifies each record as unique – the primary key.

Transaction Tables

All other tables that require this information can reference the data using the same value as the primary
key fields. The Expenses table is a transaction table – it has records that look up values in the other
tables using codes that match the primary key values in the lookup tables. While each transaction is
unique, there may be many transactions that are for the same employee or expense type.

1

2

Sam
ple

Microsoft Access 2016 - Level 3

© Watsonia Publishing Page 9 Chapter 1 - Relational Database Design

THIRD NORMAL FORM (3NF)

With third normal form (3NF) all fields in a table
must be mutually exclusive – in other words, one
field cannot rely on another. This concept of
reliance is yet another example of redundancy

and often occurs when a field that could be
calculated from existing fields is included in the
table. For example, a Tax Rate can be stored, but
the actual Tax amount can be calculated.

Third Normal Form

The best example of a database requiring the Third Normal Form (3NF) test would be in an
invoicing application. It would be tempting to create at least three fields: Quantity, Price, and Total.
The Total field is really the price multiplied by the quantity.

This table would not be in third normal form because the Total field relies on both the Quantity field
and the Price field. In databases the Total can easily be calculated for you. Therefore any field that
can be calculated from existing fields in the data should be removed.

Another example might be an Age field. For example, let’s say in our case study we recorded the
age of the employees instead of their date of birth. The data would quickly become inaccurate. So
while we might enter Michelle’s age as 41, within a year it will be wrong. Computers can calculate
age from a fixed date such as date of birth. So in Third Normal Form instead of having an Age field
you would have a Date Of Birth field.

Alpheius Global Enterprises Case Study

Fortunately, in our case study, we do not have this issue with any of our tables.

Sam
ple

Microsoft Access 2016 - Level 3

© Watsonia Publishing Page 10 Chapter 1 - Relational Database Design

DATABASE INDEXING

Indexes in books are used to help you find topics
more quickly. Indexes in databases are used to
help Access find records more quickly. In
databases with large volumes of data, or multi-

user environments, indexes can significantly
improve the performance of your database and
therefore the satisfaction of your users. This page
examines index concepts in more detail.

What is an Index?

An index is a list of pointers to the location of data. Access uses the index to find data in the same
way that you would use an index in a book – it looks up the location of the data in the index.

What are Indexes Used For?

Access uses indexes to sort or search for data. Given that indexes hold pointers rather than the
data itself, they can be re-sorted and searched much more quickly than the database. The sort order
is determined by the data type of the field that the index is created on.

For example, an index on a text field can be used to sort the records in ascending or descending
alphabetical order. An index on a numeric field can be used to sort the records in ascending or
descending numerical order. An index on a date field can be used to sort the records in
chronological order – most recent to oldest, or vice versa.

The Primary Key

In order for a relational database to locate information in separate tables, each record must be
unique in some way. The field that contains the unique value is the primary key. The primary key is
the main index for a table and is indexed automatically. Each table must have a primary key.

Examples of Fields Used for the Primary Key

Some fields are more suitable than others for use as a primary key. For example, LastName would
not be useful because it is likely that there will be duplicates. EmployeeNo, however, will be unique
for each employee and is therefore a far better candidate. Any ID number that is unique to a record
is perfect. If your data does not include ID numbers, you can use the AutoNumber data type to
assign a unique number to each record.

Using Additional Indexes

Indexes are used to locate data, but they can also slow the operation of the database down. You
should only index a field (or fields) if all of the following criteria are satisfied:

 The data type of the field is Text, Number, Currency or Date/Time

 The field is one you expect to search on frequently e.g. LastName

 The field is one you expect to sort on frequently e.g. alphabetic order

 You expect that most of the values stored in the field will be different. An index will not
speed up queries if many of the values in the field are the same.

Single-Field Indexes

Single field indexes are those which refer to one field only. For example, you may decide to create
an index on the DeptNo field in the Employee table because it is a field that you frequently use to
access information from the Department table via a join in a query.

Multi-Field Indexes

Multi-field indexes are used when you often search or sort by two or more fields at a time. For
example, if you often search for a combination of the LastName and FirstName, it makes sense to
create a multiple-field index on both fields.

Sam
ple

Microsoft Access 2016 - Level 3

© Watsonia Publishing Page 11 Chapter 2 - Creating a Relational Database

CHAPTER 2 CREATING A RELATIONAL DATABASE

In this session you will:

 learn how to create a new database file

 learn how to create the lookup tables

 learn how to define a primary key for a table

 learn how to save and close a new table design

 learn how to create a second lookup table in a database

 learn how to create the transactions table

 learn how to create the details table.

A database application requires the creation of a database file and
appropriate table structures. In Microsoft Access your complete
relational database application is stored in one database file.

After you have planned your system, the first task is to create a new
database file which becomes the repository for all of the tables,
reports, forms, and other objects of your system.

When the database has been created, you can populate it with the
necessary tables and data.

INFOCUS

Sam
ple

Microsoft Access 2016 - Level 3

© Watsonia Publishing Page 12 Chapter 2 - Creating a Relational Database

CREATING A NEW DATABASE FILE

Try This Yourself:

Before you begin, ensure
that Access has started...

Click on the File tab to
display the New area in
the Backstage

Click on the Blank
desktop database
template and type
Expense System in File
Name

We’ll save it where the
other course files are
located…

Click on [Browse] to
display the New
Database dialog box,
then locate and click on
the Course Files for
Microsoft Access 2016
folder and click on [OK]

The course files folder is
now where the database
will be saved…

Click on [Create] to
create the new database

Click on Close to close
the automatic table
(Table1) that has
appeared

In Microsoft Access 2016 all elements of your
database; tables, reports, forms, and the like, are
stored in one file with the file extension accdb.
This is what is commonly referred to as the

database file – not to be confused with the tables
where your data is stored. Before you can create
tables, or reports, or forms, or any other object, you
need to create a new database file.

3

For Your Reference…

To create a new database file:

1. Click on the File tab and click on New

2. Click on Blank database, type the File
Name, click on [Browse] and choose a save
location

3. Click on [OK] then click on [Create]

Note: Be sure to click on the Close button for the
database object when closing tables, queries, forms
etc – if you click on the Close button in the very top
right corner, you will close Access

4

Handy to Know…

 All new Access 2016 database files will be
saved in the same format as Access 2007
and 2010 files (.accdb). If you need to
provide the file to other users who may be
using earlier versions, you can save it as an
Access 2003 or earlier file (.mdb), but the file
may lose some functionality.

Sam
ple

